M1.

$$
\begin{gathered}
4^{2}+4^{2} \text { or } 16+16 \text { or } 32 \\
\text { or } 2^{2}+2^{2} \text { or } 4+4 \text { or } 8 \\
\text { oe }
\end{gathered}
$$

$\sqrt{32}$ or $4 \sqrt{2}$ or $\sqrt{8}$ or $2 \sqrt{2}$
Allow use of decimals to $2 d p$ or better
$\cos x=\frac{\sqrt{8}}{6}$ or 0.47.
oe

$$
\cos x=\frac{6^{2}+32-6^{2}}{2 \times 6 \times \sqrt{32}}
$$

[61.8, 61.9] or 62

M2.
$\tan 20=38.3 \div B D$ or
$\tan 70=B D \div 38.3$
$(B D=) 38.3 \div \tan 20$ or
$38.3 \times \tan 70$ or [105.2, 105.3]
This mark implies the first M1
$\tan 12=38.3 \div A D$ or
$\tan 78=A D \div 38.3$
$(A D=) 38.3 \div \tan 12$ or
$38.3 \times \tan 78$ or [180.1, 180.2]
This mark implies the third M1
[74.9, 74.96]
Only accept 75(.0) on the answer line if [74.9, 74.96] seen in
working

Alternative method 1

$$
\begin{aligned}
& \sin 20=38.3 \div B C \text { or } \\
& \cos 70=38.3 \div B C
\end{aligned}
$$

oe

$$
(B C=) 38.3 \div \sin 20 \text { or }
$$

$$
38.3 \div \cos 70 \text { or }[111.9,112]
$$

oe
This mark implies the first M1
$\frac{d}{\sin 8}=\frac{\text { their } 112}{\sin 12}$
oe
$\frac{\text { their } 112}{\sin 12} \times \sin 8$
dep on third M1
This mark implies the third M1
[74.9, 74.96]
Only accept 75(.0) on the answer line if [74.9, 74.96] seen in working

Alternative method 2
$\sin 12=38.3 \div$ AC or
$\cos 78=38.3 \div A C$
oe
$(A C=) 38.3 \div \sin 12$ or
$38.3 \div \cos 78$ or [184.2, 184.213]
oe
This mark implies the first M1

$$
\begin{gathered}
\frac{d}{\sin 8}=\frac{\text { their }[184.2,184.213]}{\sin 160} \\
\text { oe }
\end{gathered}
$$

$\frac{\text { their }[184.2,184.213]}{\sin 160} \times \sin 8$
dep on third M1
This mark implies the third M1
[74.9, 74.96]
Only accept 75(.0) on the answer line if [74.9, 74.96] seen in working

Alternative method 3

$$
\begin{aligned}
\sin 20=38.3 \div & B C \text { or } \\
\cos 70=38.3 \div & B C \\
& \text { oe } \\
& \sin 12=38.3 \div A C \text { or } \\
& \cos 78=38.3 \div A C
\end{aligned}
$$

($B C=$) $38.3 \div \sin 20$ or
$38.3 \div \cos 70$ or[111.9, 112]
oe
($A C=$) $38.3 \div \sin 12$ or
$38.3 \div \cos 78$ or [184.2, 184.213]
their $B C^{2}+$ their $A C^{2}-$
$2 \times$ their $B C \times$ their $A C \times \cos 8$ or
[5618.8, 5619]
$\sqrt{\text { their }[5618.8,5619]}$
dep on third M1
[74.9, 74.96]
Only accept 75(.0) on the answer line if [74.9, 74.96] seen in working

M3.
Alternative method 1
$\sqrt{14^{2}+8^{2}}$ or $\sqrt{260}$

```
or \(2 \sqrt{65}\) or \([16.1,16.125]\)
    AC
```

$\tan (x)=\frac{7}{\text { their } A C}$
oe
[23.4667, 23.5]
A1

Alternative method 2

$\sqrt{14^{2}+8^{2}+7^{2}}$ or $\sqrt{309}$
or $[17.578,17.6]$
EC
May be seen in stages
e.g. Work out AC with correct method then work out their $A C^{2}+7^{2}$ then square roots
Condone use of $2 \sqrt{65}^{2}$ for $A C^{2}$
$\sin (x)=\frac{7}{\text { their } E C} \quad(\times \sin 90)$
or
$\cos (x)=\frac{\sqrt{8^{2}+14^{2}}}{\text { their } E C}$
$\cos (x)=\frac{8^{2}+14^{2}+\text { their } E C^{2}-7^{2}}{2 \times \text { their } \sqrt{8^{2}+14^{2}} \times \text { their } E C}$
Condone use of $2 \sqrt{65}^{2}$ for $A C^{2}$
[23.4667, 23.5]

M4.

$$
\begin{gathered}
\left(x^{2}=\right) 6^{2}+8^{2}-2 \times 6 \times 8 \times \cos 72 \\
4 \times \cos 72
\end{gathered}
$$

70.33...

$$
1.236 \text { or } 1.24 \text { is } \mathrm{AO}
$$

[8.385, 8.4]...

Alternative 1

$X B=7.608 \ldots$ and $A X=2.472 \ldots$ and $X C=3.5278$

$\sqrt{ }\left(7.608^{2}+3.5278^{2}\right)$
[8.385, 8.4]

Alternative 2
$C X=5.706 \ldots$ and $A X=1.854 \ldots$ and $X B=6.145$

$\sqrt{ }\left(5.706^{2}+6.145^{2}\right)$
[8.385, 8.4]

M5.
(a) $\quad(A C=) \sqrt{10^{2}+6^{2}} \quad(=\sqrt{136})$
[11.66, 11.7]
($A X=$) their $A C \div 2$
$(=[5.8,5.85])$
($A X=) \sqrt{5^{2}+3^{2}}(=\sqrt{34})$ is M2
Do not allow their $A C$ to be 10
$\tan (V A X)=\frac{5}{\text { their } A X}$
Dep on at least one M mark gained
$(A V=) \sqrt{5^{2}+\text { their } A X^{2}}(=\sqrt{59})$ and
$\sin (V A X)=\frac{5}{\text { their } A V}(\times \sin 90)$ or
$\cos (V A X)=\frac{\text { their } A X}{\text { their } A V}$ or
correct use of cosine rule in triangle VAX
Do not allow their $A X$ to be their $A C$
[40.5, 40.8]
Allow 41 if correct method seen
SC3 Answer [0.707, 0.7115]
SC3 Answer [45.02, 45.293]
(b) $\tan V M Y=\frac{2}{5}$
oe
(M is midpoint of $R Q, Y$ is the centre of $P Q R S$))
[21.8, 21.80141]
Allow 22 if correct method seen
SC1 Angle VMY clearly marked on a diagram
SC1 Answer [0.38, 0.381]
SC1 Answer [24.2, 24.224]

M6.

$$
60^{2}+80^{2}(=10000)
$$

or
$80^{2}+120^{2}(=20800)$
or
$60^{2}+120^{2}(=18000)$
100 (may be seen on diagram)
or
[144.2, 144.2221]
or
[134.1, 134.2]
$\sqrt{60^{2}+80^{2}+120^{2}}$
$(=\sqrt{3600+6400+14400})$
oe eg $1 \sqrt{100^{2}+120^{2}}$
eg $2 \sqrt{10000+120^{2}}$
eg $3 \sqrt{24400} 20 \sqrt{61}$
This mark implies M1 M1
M1dep
[156, 156.205]

M7.(a) $35^{2}+30^{2}$

$$
\sqrt{35^{2}+30^{2}}
$$

(b) $35^{2}+30^{2}+87^{2}$ or their $46^{2}+87^{2}$
or $2125+87^{2}$
$\sqrt{35^{2}+30^{2}+87^{2}}$
or $\sqrt{\text { their } 46^{2}+87^{2}}$
or $\sqrt{2125+87^{2}}$
or $\sqrt{9694}$
98.(...) and No

